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University, Ramaf-Gan 52900, Israel 
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Abstraer It is shown that the continuous time random walk (CTRW) method provides a simple 
and natural way of Wealing problems with agedependent transition rates (ADTRs) that arise in 
many theories of non-exponential dielectric relaxation. In particular, ADTRs are especially 
suitable for analysing systems in which &er any transition from one state to another there is 
initially an increased probability of a retum uansition to the original state. An extreme example 
of this is provided by a system of independent symmetric two-state dipoles having ADTRs, 
and for this system the CTRW method provides simple exact results. It follows from these 
results that the dielectric relaxation of such systems at short times is usually associated with a 
distribution of ADTRs. The results of ealeulations on some model systems are presented and 
discussed. 

1. Introduction 

In very many systems, mostly those with an appreciable degree of disorder, the dielectric 
and/or mechanical relaxation processes do not decay exponentially with time, or equivalently 
do not have aresponse of the Debye form in the frequency domain [l]. Instead, the response 
in the frequency domain can often be described by the Havriliak-Negami @enceforth 
HN) [Z] function, whose asymptotic behaviour at high and low frequencies corresponds to 
Jonscher's 'universal' law 111. Alternatively, the relaxation function in the time domain F( t )  
is often fitted to the Kohlrausch-William-Wads stretched exponential relaxation function 
[3,4]. Both of these lead to a response function f(t)(= -dF/dt) that at short times decays 
algebraically, as t-", rather than exponentially with time. Such types of behaviour can 
always be attributed to the response of a large number of independent elements which each 
relax exponentially, with the appropriate dishibution of relaxation times @RT) [5,6], but 
the required dishibution has very specific and unrelated forms in the limits of short and 
long relaxation times, and its physical origin is far from clear. Alternatively, this behaviour 
has been attributed to processes with time-dependent transition rates (TDTRs), for which 
various physical mechanisms have been proposed [e.g. 7-10], or in some cases to a more 
complicated type of process 1111. One major objection to the use. of TDTRs is that this 
is inconsistent with the superposition principle [12,13]. We have recently shown that this 
objection can be overcome either by the use of agedependent transition rates (ADTRs), 
i.e. rates that depend on how long the system has been in a given state rather than on the 
absolute time [14], or by the use of TDTRs for the system's response function rather than 
for its relaxation function [15]. The major problem in considering systems with ADTRs is 
that the methods developed so far for analysing their behaviour [14,16-18] are much more 
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complicated than those needed for TDTRs, since they involve functions that depend not 
only on the time t but also on the age a of the state, and the relationship between these two 
variables is far from simple. In the first part of this paper it is shown that there is a very 
simple and well known formalism available for the description of systems with ADTRs, 
namely the continuous time random walk (CTRW) method developed by Scher and Lax 
1191, henceforth referred to as SL. In particular, the ADTR method provides simple exact 
results for a system of independent two-state dipoles. 

There is a close connection between TDTRs for the response function and ADTRs, and 
an examination of this will clarify which approach is more suitable for any given model 
system. By definition [20], the dielectric response function f ( t )  describes the response of 
the system to a field that was applied instantaneously at time t = 0. For a system of dipoles, 
for instance, the only ones affected by such a field are those making a transition when it is 
applied, when the field causes the number of transitions in the dxection of the field to exceed 
slightly the number occurring in the opposite direction and thus creates a net dipole moment 
or polarization P(0) of the system. Thus, the TDTR for the response function describes 
the behaviour of the system as a function of the time that has elapsed since a transition, 
just as does the ADTR method. The difference between the two approaches is whether one 
starts again each time a transition takes place, as in the ADTR approach, or incorporates 
the effects of subsequent transitions in a TDTR. Which of these approaches is more suitable 
depends on the details of the system being considered. For the fractal time defect diffusion 
model of Shlesinger [IO], if only a single relaxing transition is considered for each element 
then the TDm approach for the response function is obviously the relevant one. However, 
if one allows for the possibility that the arrival of a defect may lead to only partial relaxation 
[21] and that defects such as free volume do not necessarily just disappeax after causing a 
relaxation transition, then ADTRs could be more appropriate. In the theory of Ngai and his 
coworkers [9] it is assumed for instance that a polymer chain is initially free to move, but 
subsequently gets obstructed by entanglement with other chains. The question that arises 
here is whether a transition can only occur in chains that are free of such entanglements. If 
this is the case, each transition corresponds to the same initial state, and whether a TDTR or 
an ADTR is the more basic quantity for describing the transitions again depends on whether 
or not the first transition relaxes the system completely. On the other hand, if transitions 
can also occur in other configurations then there will initially be a distribution of transition 
rates corresponding to the relative probabilities of such configurations, and the calculations 
of the appropriate distributions of TDTRs or ADTRs is a complicated problem that does not 
seem to have been discussed in the literature. In the theories of Rose [7] and of EIliott and 
Owen [8], on the other hand, the time dependence of the transition rate is associated with 
the mechanical relaxation of the system surrounding the particle following its transition, 
and so the quantity that determines the transition rate is obviously the time that has elapsed 
since the previous transition, i.e. the age of the state. Hence, the ADTR approach is the 
most natural one, and the ADTR U@) should be directly related to the physical details 
of the process, while derivation of the TDTR for the response function from these details 
requires a complicated analysis of the probabilities of subsequent @ansitions taking place at 
different times after the first one. A similar conclusion applies for other systems in which 
after any transition from one state to another there is initially an increased probability of a 
return transition to the original state, as considered below. We conclude that ADTRs are 
certainly relevant to many of the models that have been proposed to explain non-exponential 
or non-Debye relaxation. 

In section 2 of this paper we present the CTRW formalism for a system in which all 
the elements have the same ADTR U@), and start with the analysis for a general system. 
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For an ADTR, the distribution of waiting times that is the basic constituent of the CTRW 
method does not arise from an average over a set of constant transition rates, as in SL 
[19], but is rather a basic property of the system associated with the time dependence 
of U@). For a system of conducting particles such as ions, the subsequent analysis of 
the conductivity, and hence of the dielectric relaxation, is the same as for the systems 
considered by SL, provided that there is no correlation between successive steps. However, 
such correlation can be important; for instance, computer simulations [22,23] have recently 
shown that in ionic conduction there is initially a preference for the ion to retum to the 
site that it originally left. In the remainder of this paper, we consider the extreme case of 
correlation between successive transitions, namely a system of two-state dipoles, for which 
each transition is the reverse of the previous one. For such a system, the property that 
determines the relationship between the dipole moment at time r, m(r), and its initial value, 
m(O), is not the total number of transitions that have taken place in time r but whether this 
number is odd or even. As shovin in the second part of section 2, this properly enables us 
to derive from the CTRW formalism a simple exact expression for the system's response 
function and for its frequency-dependent dielectric susceptibility in terms of the ADTR u(t) .  
The application of our analysis to a system of two-state dipoles whose dielectric properties 
are described by the HN function is considered in section 3. We show that while the low- 
frequency (or long-time) behaviour of this function is compatible with the existence of a 
single ADTR, the high-frequency (or short-time) behaviour can only be explained if there 
is a distribution of ADTRs, and the relevant formulae are derived for this case. Then, in 
section 4, the results are presented of calculations for systems of two-state dipoles with 
distributions of some simple ADTRs, chosen so that the results at both short and long times 
are similar to those observed experimentally. The extension of OUT methods to systems of 
multistate dipoles with different ADTRs for transitions between the states is considered in 
section 5, where we also discuss the differences between a distribution of ADTRs and the 
distribution of constant relaxation times of the DRT method. Finally, a summary a€ our 
results is presented in section 6.  

2. The response of systems with a single age-dependent transition rate 

We consider the relaxation of a set of independent charged elements (such as dipoles or 
ions) which we refer to as particles, and which can make transitions between discrete states. 
In this section, we consider systems such that in the absence of an applied electric field the 
transition rate out of each state is the same function u(t) of the time t since entering the 
state (i.e. of the age of the state) for all the states. This is the simplest case to analyse, 
and the extension to systems with more than one rate u(t) will be treated in the following 
sections. 

2.1. The response of a general system 

By the definition of the ADTR u(r), the probability @(r) that a particle will not make a 
transition out of its original state for at least time r after entering it satisfies the equation 

d$/a  = -v(t)@(t) (1) 
with the initial condition that @(O) = 1. Thus @(t ) ,  which is the basic quantity of the 
CTRW formalism [19], is given by = 
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The difference between an ADTR and the usual CTRW formalism lies not in the definition 
of $(t) but in its interpretation. In the usual CTRW approach 4(t)  arises from an average 
over a lot of possible constant transition rates, but in the ADTR approach it is directly 
associated with the single ADTR v( t ) .  

Following SL [19], we denote by @(t) dt the probability that the first transition from a 
state takes place between times t and t + dt after entering it, so that 

W) = -a$/& = W ) W )  (3) 
and its Laplace transform 

4(*) = 1 - U&) (4) 
where &) denotes the Laplace transform of the function g(1). Let rn(t) dt be the probability 
that the nth transition takes place between times f and t + dt, and p,(t) the probability that 
exactly n transitions take place up to lime t ,  with the initial conditions 

rn(t) = 6 ( t  - 0+)6,,0. (5) 
Then the basic equations are 

On taking the Laplace transforms of equations (5)-(8) and using equation (4), one readily 
finds, as in SL, that 

%U, z) = 1/[1 - Z4(U) I  

P ( U , Z )  = $(u)/[l - z +zu4(u)l. 

(9) 

(10) 

and hence that 

2.2. Analysis of systems of two-state dipoles 

The usual applications of the CTRW formalism are to random walks of mobile particles 
with no correlation between successive steps, where the electrical conductivity is derived 
from the mean square distance travelled by a particle in time t in the absence of a field. 
In that case, the analysis presented above refers to systems in which there is no correlation 
between the probability of a jump after a given waiting time I and the distance jumped, so 
that the conddctivity depends only on the mean number of steps taken in time t, and so on 

z)/az evaluated at z = 1 [19]. The opposite extreme case of complete correlation 
between successive steps is provided by a system in which each charged particle can only 
jump back and forth between a pair of states. Such a system is formally equivalent to 
a system of dipoles each having two possible states, with dipole moments &p. For this 
system, the moment at time t is determined by the probability of an even number of steps 
being taken in time t minus the probability that an odd number of steps is taken in this 
time, and the Laplace transform of this probability is just j ( u ,  z) with z = -1. Thus the 
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moment m(t) of a dipole which started with moment m(0) at time 2 = 0 has the Laplace 
transform 

(11) 
The above equation applies to a dipole with symmetric transition rates between the two 
states, and the extension of the analysis to the case of asymmetric rates, and so to the 
properties of general two-level systems [24], will be discussed in section 5. For the present, 
we restrict our attention to systems of independent symmetric two-state dipoles, and consider 
the application of the above result to the calculation of the dielectric .properties of such a 
system. In order to do this, we first summarize the definition of the dielectric response 
function. 

In an approach and notation similar to that of Kubo [ZO], the basic quantiry used in 
describing the dielectric response is the normalized response function f (r)  which describes 
the system’s response to an impulse field. The polarization Pi@) at time t after the 
application of such a field is just 

= ~ $ 5 0  f ( t )  for E( t )  = E&) (12) 

~ ( u )  = m ( ~ ) f i ( u ,  -1) = m(O)&u)/[Z - u&u)l. 

where xs is the static susceptibility of the system. It follows from the superposition principle 
and equation (12) that the polarization P ( t )  produced by a field E( t )  is 

If a constant field Eo is applied from t = -CO until t = 0 and is then removed, the resulting 
polarization P&) defines the relaxation function F ( t )  according to 

PJt)  = &EoF(t) = P,(O)F(t). (14) 

Hence, F ( t )  is related to the response function f ( t )  by 

F a )  = im f ($1 ds 

or equivalently 

f ( t )  = -dF/dt (16) 
while from equations (14) and (15) together with the definition of the static susceptibility 

f ( 0 )  = F(0) = 1. (17) 
The connection between our previous analysis, and in particular equation (II), and the 

dielectric response function f ( t )  is based on the fact that, as discussed in the introduction, 
f ( t )  describes the response of the dipoles that made a transition at time t = 0; the field 
applied then causes the number of transitions in the duection of the field to exceed slightly 
the number occurring in the opposite direction and thus creates a net dipole moment or 
polarization P(0)  of the system. These dipoles are just the ones considered in the analysis 
presented in the first part of this section, so that P ( t )  relaxes in the same way that m(t) 
did there. Hence, f ( t )  is proportional to m(t), while the dielectric susceptibility x(w) at 
frequency o is just x8f(io). Thus, it follows from equations (11) and (17) that 

?(U) = [24(u)/4(0)1/[2 - u4(u)l (18) 
where the factor 2/&0) ensures that f ( 0 )  = 1. Hence, from equation (13), 

x(o) = xs{[$(u)/&O)l/[2 - u6(u)lb=im. (19) 
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The above equations, in conjunction with equation (2). provide expressions for the dielectric 
response function f ( t )  and the dielectric susceptibility ~ ( o )  in terms of the fundamental 
quantity of our approach, namely the age-dependent transition rate v(r).  

A simple example of the application of the above results is provided by a system with 
a constant transition rate, u(r) = I/b. In that case, 

and 

x(o) = x d ( l +  iwbj2). (22) 
These are just the results that would be obtained from an analysis in terms of rate equations 
with constant transition rates, and correspond to dipoles having a relaxation time 5 = b/2. 

3. General properties of systems of dipoles 

We now consider how ADTRs can be used to describe the observed dielectric properties of 
materids. In very many cases, the dielectric susceptibility ~ ( o )  can be fitted by the HN 
function [Z], 

x(o) = x(O)/Il+ (ior)"lY (23) 
in which case the dielectric response function f ( t )  and its Laplace transform f(u)  have the 
following asymptotic forms, with m = a and n = 1 -ay: 

(i) 

(ii) 

as t + 0 or U + cc $(U) - A(uso)"-' and f ( t )  -A'(r/%)-" 

?(U) - B[1 - (ur#'] and f ( t )  - B'(t/ro)-(ltm) 
0 < 1 - n  =ya < 1 (24) 

as U + 0 or r + 00 

0 < m = a  Q 1. (25) 
These asymptotic forms are identical with those of Jonscher's [l] 'universal' dielectric 
response. It is worth noting that the above asymptotic forms for f ( t )  are not valid if m is 
an integer or if n = 1, while for Debye relaxation, equation (22), m = a = 1 and n = 0 so 
that ay = 1. 

In order to see how ADTRs can account for the above asymptotic behaviour, we now 
examine some general properties that follow from the results of section 2. Physically, and 
in accordance with equation (2), one expects that for a single ADTR, 

4( t )  -+ landm(t) + m(0) ast + 0. (26) 
It then follows from Tauberian theorems 1251 that 

u&u)+ 1 asu+ 00 (27) 
and so, from equation (IS), that 

f(4 - A/u (28) 

where A = 2/&0). This result does not agree with equation (24) unless n = 0 there, in 
which case the short-time behaviour is just of the Debye form, i.e. that of a system with 
a constant transition rate. It follows that the behaviour of general systems at short times 
cannot be described by a single ADTR u(t). On the other hand, as U + 0 or f -+ CO, 
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the requirement from equation (25) that &(U) - Bm(O)[l - (ur#'] is consistent with 
equation (1 1) if $(U) - 28[1 - (uq)"] ,  a form that is in principle quite possible. 

In view of the above conclusion regarding the short-time behaviour, it is of interest to 
derive expressions for the dielectric responses f ( t )  and x(w)  when one has a distribution 
of ADTRs u(t). For this purpose, it is convenient to define the function 

so that for a single rate u(t) the CTRW functions of interest are 

= exp[-hdt)l (30) 

and .~ 
m 

&(U) = 1 exp[-h,(t) - ut ]  dt. 

If one has a distribution g[u(t) ]  of ADTRs u(t), one might be tempted to write, for instance. 

(&U)) = / g W (  imexp[-hdt)  - utldt I du. (32) 

However, this ($(U)) is not relevant to the calculation of f(t) or x(o)  for ,a system of 
dipoles from equations (18) and (19). Instead, the response function f(t) or f ( u )  of each 
type of dipole with a given u(t) must be calculated separately before an average is taken 
over the distribution of the U@), so that &U) in equations (18) or (19) cannot just be 
replaced by (&U)). Thus, for a distribution of ADTRs 

?(U) = C sg(u)[2~,(u)/~"(O)l/[2 - u&(u)l du. (33) 

We note that if u&(u) + 0 as U + 0, which will normally be true, then C = 1 since 
f(0) = 1 and g(u)  is a probability density. 

4. Results of calculations for iome model system 

In order to demonstrate the application of the above analysis, we now present the results of 
calculations for a series of model systems with specific forms of ADTR u(t). On physical 
grounds, we expect that for any given dipole u(t) will be finite as t + 0, while we are 
interested in a u(t) that leads to the desired behaviour in the long-time or low-frequency 
limits. The simplest such ADTR having these propexties is 

U&) = a / @  + t )  

for which 

M t )  = (1 + t/c)-". 

(34) 

(35) 

It is necessary that a z 1 in order that &(O) be finite. Incidentally, the corresponding 
distribution of waiting times is of the form recently studied by Bettin et a1 [26], and has 
the physically reasonable property that the wansition rate decreases as time progresses. It is 
possible to add a small constant term k to u(t) if one wants a finite transition rate as t -+ CO, 

but this will only affect the results appreciably at frequencies of order of magnitude not 
greater than k ,  and we choose not to consider such low frequencies. Initially, we present 
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the results for a single value of c, namely c = 1, and after that we consider a distribution 
of ADTRs u(f)  with different values of the parameter c. We note that 

&(h) = ~ p e x p ( - i o ~ ) ( l  +t/c)-dt =c&(ico) (36) 

In all cases, we write 

x(o) = ~'(o) - ix"(o) (38) 
and present the results for x"(w)/x(O), since the frequency dependence of the imaginary 
part of the susceptibility, which always exhibits a maximum at some frequency, is a more 
sensitive test of the results than is the monotonically decreasing real part. 

4.1. Results for a single ADTR 

In order to evaluate &(io). we wote 

and interchanged the order of integration over t and x to obtain 

&(io) = [I/ r(a)l [exp(-x)x"-l/(x +io)] dx (40) I -  
a form that is much more amenable to numerical integration. From equation (40). it is at 
once apparent that 41 (io) - I/io as o + M, just as for Debye relaxation: this result is 
expected since v ( t )  + Q/C, a constant, as t + 0. At low frequencies, on the other hand, 
one readily finds (on substituting y = x / o )  that 

CO 

&(O) -&(io) = [io"-'/r(a)lS [y"-'exp(-oy)/(y + i)] dy. (41) 
0 

If a < 2, the integral is dominated by the values of the integrand for small values of y, and 
so is virtually independent of o as o + 0. Thus one should choose a = 1 + m in order 
to obtain the results of equation (25). Accordingly, we performed calculations for a = 1.5, 
1.8, and 2.2, where the thiid value was deliberately chosen to be greater than two, since for 
such values of a term of order o will dominate one of order ma-' as o + 0. 

In figures 1 and 2, we show x"(o)/x(O) and log[x"(o)/x(O)] respectively as functions 
of log(@). The results shown in figure 1 look quite reasonable, while from figure 2 we see 
that at high frequencies x"(w)/x(O) is proportional to l/o for all the systems, while at low 
frequencies the slope of log[x"(o)/x(O)] as afunction of log@) is close to 0.5 for a = 1.5, 
to 0.8 for a = 1.8, and to unity for Q = 2.2, in accordance with the above predictions. 

4.2. Results for a distribruion of ADTRs 

In order to obtain the behaviour at short times or high frequencies given by equation (24). we 
require a distribution of ADTRs, as noted above. In order to find the appropriate distribution 
of the parameter c, we note that u(t)  + a/c as t -+ 0, while according to equations (21) 
and (72) a constant u ( t )  = a / c  would lead to a Debye relaxation with relaxation time 
5 = c/(2a). Now a dishibution of relaxation times g(z) = A(s/so)P-' leads to a response 
function f ( t )  proportional to (t/70)8-' and to a susceptibility x(w) proportional to (ioto)-B 



CTRW method for age-dependent transition rates 7695 

log (U) 
Figure 1. The susceptibility x"(o)/x(O) at frequency o as a function of lo&) for a single 
ADTR v(t )  = n / ( l  + t). The continuous line is for a = 1.5, the dotted line for 0 = 1.8, and 
the broken line for a = 2.2. 

/ 

log ((U) 

Figure 2 log[xf'(o)/x(0)l as a function of log(") for a single ADTR u ( t )  = a/( l  + 0. The 
continuous line is for a = 1.5, the doaed line for n = 1.8, and the broken line for n = 2.2. 

[271. Accordingly, in order to obtain results similar to those of equation (X),  we chose a 
dishtbution of the parameter c 

The values of x"(o)/x(O) were then calculated from equations (33) and (37) by numerical 
integation of the results of section 4.1, and the results for a typical value of p. p = 0.6, 
are presented in figures 3 and 4, which correspond to figures 1 and 2 for a single value of c. 
From the log-log plot in figure 4, we see that while the above distribution of ADTRs did not 
affect the frequency dependence of x"(o)/~(O) at low frequencies, it did lead as expected 
to the proportionality of ,y"(o)/x(O) to o-fl at high frequencies for all three values of the 
parameter a. Similar results were obtained for other values of the exponent p.  
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Figme 3. The susceptibility x"(o)/x (0) at frequency o as a function of log(o) for a dishibution 
of ADTRs "(I) = a/(c + t )  with g(c) = @ - I ,  0 < c c 1. and B = 0.6. The continuous tine 
is for a = 1.5, the dotted line for a = 1.8, and the broken line for a = 2.2. 
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Figure 4. log[x"(o)/~(0)1 as a function of log(o) for a distribution of ADTRs v 0 )  = a/(c+t)  
with g(c) = j3co-', 0 < c c 1, and j3 = 0.6. The continuous line is for a = 1.5, the dotted 
line for a = 1.8, and the broken line for a = 2.2. 

5. Discussion 

The results presented in section 4.2 show that even a simple distribution of ADTRs u(t)  can 
lead to results for the dielectric susceptibility at both high and low frequencies similar to 
that observed experimentally. The first point that we now consider is how our methods can 
be applied to more complicated systems of dipoles than the system of symmetric two-state 
dipoles considered so far. For this purpose, we examine a system of dipoles with N possible 
states, which we label by j ,  1 < j 6 N ,  and arbitrary ADTRs between them that are the 
same for all the dipoles; a twc-level system with asymmetric transition rates 1241 is a simple 
special case of such a system. In the application of our method, the probability @(t)  of a 
waiting time of at least f in equations (1) and (2) must then be replaced by the corresponding 
quantity @(t;  j )  for state j ,  and +(t)  of equation (3) by +(t: j ,  j ' ) ,  the probability density 
that a wansition takes place from state j' to state j after time t .  Similarly, rn(t )  and pn( t )  
of equations (5) and (7) must be replaced by the corresponding probabilities ro(t; j ,  k )  and 
pn(t: j ,  k) that a dipole inifially in state k will after n steps arrive at or be in state j ,  and 
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equations (6) and (7) will be replaced by a set of simultaneous equations involving these 
quantities. This formalism is similar to that of the multistate CTRW [28], and the main 
difference is once again that the total polarization at time t is determined for a system 
of dipoles by the appropriate sum (in an obvious notation) of the generating functions 
p ( t .  z ;  j ,  k) with z = 1, rather than by the derivatives of these functions. The analysis in 
this case is so much more complicated, especially if one considers distributions of ADTRs 
as in section 4.2, that we preferred to present in this paper just the analysis for a system of 
two-state symmetric dipoles, For that system exact results could be derived fairly simply, 
while there is no obvious reason to expect that the general features of dielectric relaxation for 
systems of this type differ appreciably from those of more complicated systems of dipoles. 

Another possible extension of our method, as indicated in the introduction, is to the 
study of ionic transport in systems where an ion that hops from one site to another has 
initially an increased probability of returning to the original site [22,23]. This is a very 
much more complicated problem than that of a system of two-state dipoles, and is at present 
being investigated. 

Although the main aim of this paper was to show how the CTRW method provides a 
natural way of treating ADTRs, it is of interest to consider finally the implications of our 
analysis and results for the value of the concept of ADTRs. In sections 3 and 4 we saw that, 
at least for a system of two-state dipoles, it is necessary to assume a distribution of ADTRs 
in order to account for the short-time or high-frequency behaviour of the HN response that 
is often observed. The question that naturally arises is whether and why such a distribution 
of ADTRs may be preferable to the distribution of constant relaxation times used in the 
DRT method. We note here just one significant aspect of the difference between the two 
approaches. The DRT method requires one distribution for short relaxation times, which 
govern the short-time behaviour of the system, and an entirely different distribution for the 
long relaxation times that determine its long-time behaviour, while the ADTR method only 
requires a distribution for the short-time behaviour. It has been suggested [29] that the 
short-time behaviour of many systems is associated with local motions and the immediate 
environment of a particle; even for the longitudinal vibrations of a polymer chain, the 
higher-frequency modes correspond approximately to the optical modes of a linear chain, 
and so are much more sensitive to the local disorder than the low-frequency acoustic-type 
vibrations. Since in a disordered system one certainly expects the existence of short-range 
disorder, a distribution of rates for the description of this behaviour is not unexpected, and 
its universal form is associated with a power law diskibution of relaxation times z for short 
values of these times which comesponds to a Levy distribution of relaxation frequencies 
U = l/t for large values of v .  The long-time behaviour, on the other hand, can well be of 
the same form for all the dipoles, as in the model systems that we considered. 

6. Conclusions 

The main conclusion from our analysis is that the CTRW method of SL [I91 provides a 
natural framework for treating age-dependent transition rates. These ADTRs are expected 
to be of particular significance in systems where there is an increased probability that after 
making a transition a particle will return to its original site rather than making its subsequent 
transition to some other site. An extreme example of such correlations is provided by 
systems of symmetric two-state dipoles, where all the transitions are of this form, and for 
these the CTRW formalism leads to very simple exact formulae for the dielectric response 
function and the dielectric susceptibility in terms of this transition rate. A comparison 
of these formulae with the typical dielectric behaviour of real systems indicates that a 
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distribution of such rates is usually required in order to account for the short-time high- 
frequency behaviour, but (in contrast to the approach based on a distribution of relaxation 
times) another independent distribution is not needed in order to explain the long-time 
low-frequency behaviour of the systems. These results are confirmed by the results of our 
calculations on some model systems. 
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